A Low Cost High Flux Solar Simulator

نویسنده

  • Daniel Codd
چکیده

A low cost, high flux, large area solar simulator has been designed, built and characterized for the purpose of studying optical melting and light absorption behavior of molten salts. Seven 1500 W metal halide outdoor stadium lights are used as the light source to simulate concentrating solar power (CSP) heliostat output. Metal halide bulbs and ballasts are far less costly per-watt than typical xenon arc lamp solar simulator light sources. They provide a satisfactory match to natural sunlight; although ‘unfiltered’ metal halide lights have irradiance peaks between 8001000 nm representing an additional 5% of measured energy output as compared to terrestrial solar irradiance over the same range. With the use of a secondary conical concentrator, output fluxes of approximately 60 kW/m (60 suns) peak and 45 kW/ m (45 suns) average are achieved across a 38 cm diameter output aperture. Unique to the design of this simulator, the tilt angle and distance between the output aperture and the ground are adjustable to accommodate test receivers of varying geometry. Use of off-the-shelf structural, lighting and electrical components keeps the fabrication cost below $10,000.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and numerical characterization of a new 45 kWel multisource high-flux solar simulator

The performance of a new high-flux solar simulator consisting of 18 × 2.5 kWel radiation modules has been evaluated. Grayscale images of the radiative flux distribution at the focus are acquired for each module individually using a water-cooled Lambertian target plate and a CCD camera. Raw images are corrected for dark current, normalized by the exposure time and calibrated with local absolute ...

متن کامل

Analysis of the Radiation Flux Profile along a Pv Trough Concentrator

The primary advantage of a PV concentrator is that concentrating light allows a significant reduction in the area of solar cell coverage, the main cost driver in a flat plate system. PV systems, whether flat plate or concentrating, normally have groups of solar cells connected in series in order to increase voltage and limit current. However, low illumination on a single cell proportionally red...

متن کامل

Organic photovoltaics and concentrators

The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric conversion. In this work, we explore two new device architectures. In antenna organic solar cells, we utilize external energy transfer mediated by surface plasmon polaritons to...

متن کامل

Energy cost minimization in an electric vehicle solar charging station via dynamic programming

Environmental crisis and shortage of fossil fuels make Electric Vehicles (EVs) alternatives for conventional vehicles. With growing numbers of EVs, the coordinated charging is necessary to prevent problems such as large peaks and power losses for grid and to minimize charging costs of EVs for EV owners. Therefore, this paper proposes an optimal charging schedule based on Dynamic Programming (DP...

متن کامل

Thermoelectric Oxide Modules (TOMs) for the Direct Conversion of Simulated Solar Radiation into Electrical Energy

The direct conversion of concentrated high temperature solar heat into electrical energy was demonstrated with a series of four–leg thermoelectric oxide modules (TOM). These temperature stable modules were not yet optimized for high efficiency conversion, but served as proof-of-principle for high temperature conversion. They were constructed by connecting two p(La1.98Sr0.02CuO4) and two n-type ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011